

AI-169 型人工智能温度控制器 使用指南 (V9.1)

1. 主要特点

- 全球通用的 100~240VAC 范围电源。
- 采用具备自整定 (AT) 功能的 AI 人工智能调节算法。
- 通过 ISO9001 质量认证和 CE 认证,在质量、抗干扰能力及安全标准方面达到国际水准。

2. 技术规格

- ●輸入规格: K、T、E、J、N 可自由洗择。
- ●测量范围: K、E、J、N 为 0~999℃; T 为 350℃。
- ●测量精度: 0.5 级 (0.5%FS±1℃)。
- ●调节方式: 带自整定 (AT) 功能的 AI 人工智能调节或位式 (ON/OFF) 调节。
- ●固态继电器电压输出:5VDC/30mA(用于驱动SSR固态继电器,多个SSR时请并联SSR的输入)。
- ●报警功能:上限报警、下限报警及正负偏差报警功能。
- ●电 源: 100~240VAC, -15%, +10% / 50 60Hz
- ●电源消耗: ≤ 2W
- ●使用环境: 温度 -10~+60℃ 湿度 0~90RH%

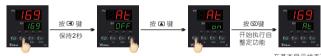
3. 基本显示状态

出、报警输出 1、2 和运行指示灯。

4. 操作方法

4.1 改变设定温度

在基本显示状态下,如果参数锁没有锁上,可通过按 ①、②、△ 键来修改下显示窗口显示的设定温度控制值。按 ② 键减小数据,按 △ 键增 加数据,可修改数值位的小数点同时闪动(如同光标)。按 △ 键并保持不放,可以快速地增加 / 减少数值,并且速度会随小数点右移自动加快(2 级速度)。 而按 ④ 键则可直接移动修改数据的位置(光标),按 △ 或 ② 键可修改闪动位置的数值,操作快捷。



按 ▼ 键可减小数据;按键并保持不放 可以快速地减小数值。

4.2 自整定 (AT) 操作

采用 AI 人工智能 PID 方式进行控制时,可进行自整定(AT)操作来确定 PID 调节参数。在基本显示状态下按 ① 键并保持 2 秒,将出现 At 参数,按 ② 键将下显示窗的 oFF 修改为 on,再按 ③ 键确认即可开始执行自整定功能。在基本显示状态下仪表下显示窗将闪动显示"At"字样,此时仪表执行位式调节,经 2 个振荡周期后,仪表内部微处理器可自动计算出 PID 参数并结束自整定。如果要提前放弃自整定,可再按 ④ 键并保持约 2 秒钟调出 At 参数,并将 on 设置为 oFF 再按 ④ 键确认即可。若需要执行快速自整定(AAT)操作,可以将 At 参数设置为 AAt 即可启动。

在基本显示状态了 闪动显示"At"字样

注 1: 系统在不同给定值下自整定 At 得出的参数值不完全相同,执行自整定功能前,应先将给定值 SV 设置在最常用值或是中间值上,如果系统是保温性能好的电炉,给定值应设置在系统使用的最大值上,自整定过程中禁止修改 SV 值。视不同系统,自整定需要的时间可从数秒至数小时不等。

注 2: 位式调节回差参数 CHYS 的设置对自整定过程也有影响,一般 CHYS 的设定值越小自整定参数准确度越高。但 CHYS 值如果过小则可能因输入波动引起位式调节的误动作,这样反而可能整定出彻底错误的参数,推荐 CHYS=2.0。

注 3: 快速自整定 AAT 应在加热器尚未开始升温时启动,若加热器已经升到一定温度则 AAT 效果越差。快速自整定 AAT 无需传统的周期振荡,系统分析加热器升温曲线来确定 PID 参数,若成功相对传统 AT 可以大大节约调试时间。若 AAT 还未自动完成仪表就退出满功率输出状态,则 AAT 失败,终止自整定,并不会修改 PID 参数,此时可以启动传统自整定 AT 来整定参数。若 AAT 快速自整定后控制效果不理想,可以再执行一次传统自整定 AT。

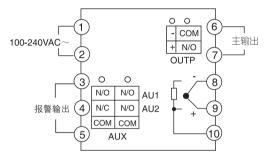
4.3 设置参数

在基本显示状态下按②键并保持约2秒钟,即进入现场参数表。按③键可显示下一参数。如果参数没有锁上,用④、⑦、△等键可修改参数值。按④键并保持不放,可返回显示上一参数。先按④键不放接着再按③键可退出设置参数状态。如果没有按键操作,约30秒钟后会自动退出设置参数状态。设置Loc=808,可进入系统参数表,如下表。

参数修改好后,按(①)键并保持不放,直到退出设置参数状态,即可保存参数。

4.4 参数表

参数	参数含义	说明	设置 范围
HIA	上限报警	测量值 PV 大于 HIA 值时仪表将产生上限报警;测量值 PV 小于 HIA-AHY值时,仪表将解除上限报警。	-199~999 ℃
LoA	下限报警	当 PV 小于 LoA 时产生下限报警,当 PV 大于 LoA+AHY 时下限报警解除。	-199~999 ℃
HdA	偏差上限 报警	当偏差(测量值 PV 减给定值 SV) 大于 HdA 时产生偏差上限报警。当偏差 小于 HdA-AHY 时偏差上限报警解除。	-199~999 ℃
LdA	偏差下限 报警	当偏差(测量值 PV 减给定值 SV) 小于 LdA 时产生偏差下限报警。当偏差 大于 LdA+AHY 时偏差下限报警解除。	-199~999 ℃
Loc	参数修改级别	Loc=0,允许修改 HIA、LoA、HdA 及 LdA 参数及给定值 SV; Loc=1,禁止修改 HIA、LoA、HdA 及 LdA 参数,允许修改给定值 SV; Loc=2~3,允许修改 HIA、LoA、HdA 及 LdA 参数,禁止修改给定值 SV; Loc=4~255,禁止修改所有参数及给定值 SV。 设置 Loc=808,并按确 ③ 认,可检查修改以下参数,否则按 ④ 键退出参数设置状态。	0~255
AHY	报警回差	用于避免报警输出继电器频繁动作, 一般建议设置为 2°C。	0~200


АОР	报警输出 定义	A、B 数值 示不从任何端口表示该报警由 / 定义如下表: C	C dA + LdA a范围是 0-2, 口输出该报警 AU1 及 AU2 HdA 无 AU1 AU2 AU1 AU2 无 无 AU1	E B LOA O 或其 1、2 命出。C LO	A HIA 它数表 分别 数值 IA J1 J1 J1 J2 J2	0~922
CrL	控制方式	onF, 采用 量值 PV 大于约 加热, 当 PV 小 通加热。 AI, 采用身 调节算法,输出	ON-OFF 位 合定值 SV 时: 小于 SV-AHY	式调节,输出断,时输出。 放弃 放弃 放弃 放弃 放弃 放弃 放弃 放	开停止 重新接 AI-PID 北例输	AI
run	运行方式	Fon 保持运行控制状态,此时不能从面板操作控制启停。 run 运行状态,该状态下可按住 ② 仪表进入停止状态。 StP 停止状态,该状态下可按住 ② 仪表进入运行状态。			Fon	
Act	正/反作用	输出趋向减小, dr,正作用 输出趋向增大, rEb,反作月 除下限报警及偏	目调节方式, 如致冷控制。 目调节方式, 扁差下限报警员 目调节方式,	新入增 新入增 , 并且有 力能。 并且有	大时, 上电免	rE

		OFF,自整定 At 功能处于关闭状态。	
At	自整定	on, 启动 PID 及 Ctl 参数自整定功能, 自整定结束后会自动返回 OFF。 FOF, 自整定功能处于关闭状态,且 禁止从面板操作启动自整定。 AAt, 快速自整定功能,自整定结束 后自动返回 OFF。	OFF
Р	比例带	P为定义 APID 及 PID 调节的比例带,单位为 C或 F,而非采用量程的百分比。注:通常都可采用 AT 功能确定 P、I、D及 Ctl 参数值,但对于熟悉的系统,比如成批生产的加热设备,可直接输入已知下确定的 P、I、D、Ctl 参数值。	1~999
1	积分时间	定义 PID 调节的积分时间,单位是秒,I = 0 时取消积分作用。	0~999 秒
d	微分时间	定义 PID 调节的微分时间,单位是 0.1 秒。d=0 时取消微分作用。	0~999 秒
CtI	输出周期	采用 SSR 输出时一般设置为 0.5-3.0 秒。	0.5~150 秒
СНҮ	位式调节回差	用于避免 ON-OFF 位式调节输出继电器频繁动作。如加热控制时,当 PV 大于 SV 时继电器开关断,当 PV 小于 SV-CHY 时输出重新接通。	0~200
InP	输入规格	InP用于选择输入规格,其数值对应的输入规格如下: InP 输入规格 InP 输入规格 0 K 3 T 4 E 5 J 6 备用 7 N 8-20 备用	0~21
Scb	主输入平移修正	Scb 参数用于对输入进行平移修正,以补偿传感器、输入信号、或热电偶冷端自动补偿的误差。PV 补偿后 = PV 补偿前 + Scb。 注:除非测量有偏差,否则一般应设置为0,不正确的设置会导致测量误差。	-199 ~ +400

FIL	输入数 字滤波	FIL 决定数字滤波强度,设置越大滤波越强,但测量数据的响应速度也慢。在测量受到较大干扰时,可逐步增大 FIL 使测量值瞬间跳动小于 2~5 个字即可。当仪表进行计量检定时,应将 FIL 设置为 0 或 1 以提高响应速度。	0~40
SPH	给定值 上限	限制给定值 SV 的上限设置范围,例如 SPH=400,则 SV 设置范围为 -199~+400℃。	-199 ~ +999℃

5. 接线方法

AI-169 D1 型面板仪表 (48mmX48mm) 接线图如下:

注 1: 热电偶应用补偿导线直接接入仪表后盖输入端子上,中间不得转用普通导线连接,并注意补偿导线型号与极性的正确。

注 2: 外接的固态继电器 (SSR) 应使用输入与输出之间隔离耐压大于 2300V 的产品 (CE 认证的安全要求)。

注:因技术升级或特殊订货等原因,仪表随机接线图如与本说明书 不符,请以随机接线图为准。

关注公众号 获取技术支持

